Low-pH seawater alters indirect interactions in rocky-shore tidepools

Ocean acidification is expected to degrade marine ecosystems, yet most studies focus on organismal-level impacts rather than ecological perturbations. Field studies are especially sparse, particularly ones examining shifts in direct and indirect consumer interactions. Here we address such connection...

Full description

Bibliographic Details
Main Authors: Jellison, Brittany, Gaylord, Brian, Ninokawa, Aaron, Elsmore, Kristen, Ng, Gabriel, Miller, Jeffrey, Hill, Tessa
Format: Dataset
Language:unknown
Published: 2023
Subjects:
Online Access:https://zenodo.org/record/7570007
https://doi.org/10.5061/dryad.sn02v6x5n
Description
Summary:Ocean acidification is expected to degrade marine ecosystems, yet most studies focus on organismal-level impacts rather than ecological perturbations. Field studies are especially sparse, particularly ones examining shifts in direct and indirect consumer interactions. Here we address such connections within tidepool communities of rocky shores, focusing on a three-level food web involving the keystone sea star predator, Pisaster ochraceus, a common herbivorous snail, Tegula funebralis, and a macroalgal basal resource, Macrocystis pyrifera. We demonstrate that during nighttime low tides, experimentally manipulated declines in seawater pH suppress the antipredator behavior of snails, bolstering their grazing, and diminishing the top-down influence of predators on basal resources. This attenuation of top-down control is absent in pools maintained experimentally at higher pH. These findings suggest that as ocean acidification proceeds, shifts of behaviorally mediated links in food webs could change how cascading effects of predators manifest within marine communities.