Permafrost response to temperature rise in carbon and nutrient cycling: Effects from habitat-specific conditions and factors of warming

Permafrost is warming at a rate of two times faster than the rest of the Earth's surface. However, there is still a lack of a quantitative basis for predicting the functional stability of permafrost ecosystems in carbon (C) and nutrient cycling. We compiled the data of 708 observations from 89...

Full description

Bibliographic Details
Main Authors: Gao, Wenlong, Sun, Weimin, Xu, Xingliang
Format: Other/Unknown Material
Language:unknown
Published: 2023
Subjects:
Online Access:https://zenodo.org/record/7533597
https://doi.org/10.5281/zenodo.7533597
Description
Summary:Permafrost is warming at a rate of two times faster than the rest of the Earth's surface. However, there is still a lack of a quantitative basis for predicting the functional stability of permafrost ecosystems in carbon (C) and nutrient cycling. We compiled the data of 708 observations from 89 air-warming experiments in the Northern Hemisphere and characterized the general effects of temperature increase on permafrost C exchange and balance, biomass production, microbial biomass, soil nutrients, and vegetation N dynamics via a meta-analysis. Also, an investigation was made on how responses may change with habitat-specific (e.g., plant functional groups and soil moisture status) conditions and warming variables (e.g., warming phases, levels, and timing). Warming downregulated net ecosystem C exchange generally via stimulating ecosystem respiration (15.6%) more than photosynthesis (6.2%). Vegetation usually responded to warming by investing more the C to the belowground, as belowground biomass increased much more (30.1%) than aboveground biomass (2.9%). Warming had a minor effect on microbial biomass. Warming increased soil ammonium and nitrate concentrations. What's more, a synthesis of 70 observations from 11 herbs and 9 shrubs revealed a 2.5% decline of N in green leaves. Compared to herbs, shrubs demonstrated a stronger response in respiration and had green leaf N declined by a greater extent. Not only in dry conditions did green leaf N decline with warming but also in wet conditions. Warming in non-growing seasons would negatively affect soil water, C uptake, and biomass production during growing seasons. Permafrost C loss and vegetation N decline may increase with warming levels and timing. Overall, our findings suggest that besides a positive C cycling-climate feedback, there will be negative feedback between permafrost nutrient cycling and climate warming. Funding provided by: National Natural Science Foundation of ChinaCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100001809Award Number: ...