Supporting data of: Hydrography and food distribution during a tidal cycle above a cold-water coral mound

This file contains the raw data and data analyses scripts to: Hydrography and food distribution during a tidal cycle above a cold-water coral mound Evert de Froe, Sandra R. Maier, Henriette G. Horn, George A. Wolff, Sabena Blackbird, Christian Mohn, Mads Schultz, Anna-Selma van der Kaaden, Chiu H. C...

Full description

Bibliographic Details
Main Authors: de Froe, Evert, Maier, Sandra R., Horn, Henriette G., Wolff, George. A., Blackbird, Sabena, Mohn, Christian, Schultz, Mads, van der Kaaden, Anna-Selma, Cheng, Chiu H., Wubben, Evi, van Haastregt, Britt, Moller, Eva Friis, Lavaleye, Marc, Soetaert, Karline, Reichart, Gert-Jan, van Oevelen, Dick
Format: Other/Unknown Material
Language:English
Published: Zenodo 2022
Subjects:
Online Access:https://doi.org/10.5281/zenodo.6997532
Description
Summary:This file contains the raw data and data analyses scripts to: Hydrography and food distribution during a tidal cycle above a cold-water coral mound Evert de Froe, Sandra R. Maier, Henriette G. Horn, George A. Wolff, Sabena Blackbird, Christian Mohn, Mads Schultz, Anna-Selma van der Kaaden, Chiu H. Cheng, Evi Wubben, Britt van Haastregt, Eva Friis Moller, Marc Lavaleye, Karline Soetaert, Gert-Jan Reichart, Dick van Oevelen. Deep Sea Research Part I: Oceanographic Research Papers, 2022, ISSN 0967-0637, https://doi.org/10.1016/j.dsr.2022.103854. Abstract: Cold-water corals (CWCs) are important ecosystem engineers in the deep sea that provide habitat for numerous species and can form large coral mounds. These mounds influence surrounding currents and induce distinct hydrodynamic features, such as internal waves and episodic downwelling events that accelerate transport of organic matter towards the mounds, supplying the corals with food. To date, research on organic matter distribution at coral mounds has focussed either on seasonal timescales or has provided single point snapshots. Data on food distribution at the timescale of a diurnal tidal cycle is currently limited. Here, we integrate physical, biogeochemical, and biological data throughout the water column and along a transect on the south-eastern slope of Rockall Bank, Northeast Atlantic Ocean. This transect consisted of 24-hour sampling stations at four locations: Bank, Upper slope, Lower slope, and the Oreo coral mound. We investigated how the organic matter distribution in the water column along the transect is affected by tidal activity. Repeated CTD casts indicated that the water column above Oreo mound was more dynamic than above other stations in multiple ways. First, the bottom water showed high variability in physical parameters and nutrient concentrations, possibly due to the interaction of the tide with the mound topography. Second, in the surface water a diurnal tidal wave replenished nutrients in the photic zone, supporting new primary production. ...