Supporting Data for: McKenna et al. (2018), Arctic sea-ice loss in different regions leads to contrasting Northern Hemisphere impacts

This is a dataset of output from version 4 of the Reading Intermediate Global Circulation Model (IGCM4) that was used in the article: McKenna, C. M., Bracegirdle, T. J., Shuckburgh, E. F., Haynes, P. H., & Joshi, M. M. (2018). Arctic sea ice loss in different regions leads to contrasting Norther...

Full description

Bibliographic Details
Main Author: Christine McKenna
Other Authors: McKenna, Christine
Format: Dataset
Language:English
Published: 2022
Subjects:
Online Access:https://zenodo.org/record/6453986
https://doi.org/10.5281/zenodo.6453986
Description
Summary:This is a dataset of output from version 4 of the Reading Intermediate Global Circulation Model (IGCM4) that was used in the article: McKenna, C. M., Bracegirdle, T. J., Shuckburgh, E. F., Haynes, P. H., & Joshi, M. M. (2018). Arctic sea ice loss in different regions leads to contrasting Northern Hemisphere impacts. Geophysical Research Letters, 45, 945-954. https://doi.org/10.1002/2017GL076433 Files required to setup the IGCM4 simulations are given in the directory 'IGCM4_setup'. All other directories contain netcdf files of timeseries of various monthly mean fields for each IGCM4 simulation (see paper for details on these simulations). The available variables are: ua: zonal winds zg: geopotential height ts: surface temperature hfls, hfss, rlds, rlus: surface heatfluxes Flat, Fz, divF: Eliassen-Palm flux vectors and their divergence (only for months November-February) The ua and zg variables are given for different pressure levels indicated in the filenames (e.g., ua500 is ua at 500 hPa). ua is additionally given in terms of the zonal mean with latitude and pressure. zg is additionally given in terms of longitude and pressure, averaged over latitudes between 60N-80N. All files follow CF conventions in terms of metadata, variable names, etc. Note that the CTL, ATL, PAC, and ATLandPAC simulations were all run continuously in time (i.e., every year starts from the end of the previous year). The 0.5ATL and 0.5PAC simulations, however, were run for 300 years in three separate 100-year chunks (i.e., the initial conditions used to start each 100-year chunk were different). The three 100-year chunks have been appended together in the netcdf files.