Summary: | Humans are primary drivers of declining abundances and extirpation of large carnivores worldwide. Management interventions to restore biodiversity patterns, however, include carnivore reintroductions, despite the many unresolved ecological consequences associated with such efforts. Using multistate capture-mark-recapture models, we explored age-specific survival and cause-specific mortality rates for 134 pumas (Puma concolor) monitored in the Greater Yellowstone Ecosystem during gray wolf (Canis lupus) recovery. We identified two top models explaining differences in puma survivorship, and our results suggested three management interventions (unsustainable puma hunting, reduction of a primary prey, reintroduction of a dominant competitor) have unintentionally impacted puma survival. Specifically, puma survival across age classes was lower in the 6-month hunting season than the 6-month non-hunting season; human-caused mortality rates for juveniles and adults, and predation rates on puma kittens, were higher in the hunting season. Predation on puma kittens, and starvation rates for all pumas, also increased as managers reduced elk (Cervus elaphus) abundance in the system, highlighting direct and indirect effects of competition between recovering wolves and pumas over prey. Our results emphasize the importance of understanding the synergistic effects of existing management strategies and the recovery of large, dominant carnivores to effectively conserve subordinate, hunted carnivores in human-dominated landscapes. Elbrochetal_PumaData_forCMR Puma binary data--detected or not, and cause specific mortality codes. Kitten/litter codes. All data at 3-month intervals.
|