Data from: Field metabolic rates of teleost fishes are recorded in otolith carbonate

Field metabolic rate (FMR) is key to understanding individual and population-level responses to environmental changes, but is challenging to measure in field conditions, particularly in aquatic environments. Here we show that FMR can be estimated directly from the isotopic composition of carbon in f...

Full description

Bibliographic Details
Main Authors: Chung, Ming-Tsung, Trueman, Clive N., Godiksen, Jane A., Holmstrup, Mathias Engell, Grønkjær, Peter
Format: Dataset
Language:unknown
Published: 2019
Subjects:
Online Access:https://zenodo.org/record/4962027
https://doi.org/10.5061/dryad.1hg55vm
Description
Summary:Field metabolic rate (FMR) is key to understanding individual and population-level responses to environmental changes, but is challenging to measure in field conditions, particularly in aquatic environments. Here we show that FMR can be estimated directly from the isotopic composition of carbon in fish otoliths (δ13Coto). We describe the relationship between δ13Coto values and oxygen consumption rate, and report results from laboratory experiments relating individual-level measurements of oxygen consumption rates to δ13Coto values in Atlantic cod (Gadus morhua). We apply our new δ13Coto metabolic proxy to existing δ13Coto data from wild cod and four deepwater fish species to test the validity of inferred FMR estimates. The δ13Coto metabolic proxy offers a new approach to study physiological ecology in free-ranging wild fishes. Otolith-based proxies for FMR are particularly promising as they allow retrospective assessment of time-integrated, individual-level FMR throughout an individual fish's life history. Supplementary Data 1Otolith d13C derived field metabolic rate in four different data sets used in this study, including (1) a rearing experiment of Atlantic cod; (2) 76 species from literature; (3) wild Atlantic cod from literature; (4) four deep-sea fish from literature.