Data from: Nutrient release from moose bioturbation in aquatic ecosystems

While the ecological importance of bioturbation is well recognized and the prevalence of aquatic foraging by terrestrial ungulates is increasingly appreciated, research linking how terrestrial ungulates function as disturbance mechanisms via bioturbation in freshwater systems is lacking. The purpose...

Full description

Bibliographic Details
Main Authors: Bump, Joseph K., Bergman, Brenda G., Schrank, Amy J., Marcarelli, Amy M., Kane, Evan S., Risch, Anita C., Schütz, Martin
Format: Dataset
Language:unknown
Published: 2016
Subjects:
Online Access:https://zenodo.org/record/4939483
https://doi.org/10.5061/dryad.k9087
Description
Summary:While the ecological importance of bioturbation is well recognized and the prevalence of aquatic foraging by terrestrial ungulates is increasingly appreciated, research linking how terrestrial ungulates function as disturbance mechanisms via bioturbation in freshwater systems is lacking. The purpose of this study was to quantify potential nutrient pulses released from benthic sediments into the water column when moose Alces alces feed on aquatic plants. We also determined if we could experimentally mimic the benthic disturbance and the expected nutrient pulse created when moose feed aquatically. When moose foraged aquatically, significant releases of both total and dissolved phosphorus (P) and nitrogen (N) resulted in the waters that were disturbed in foraging areas compared to adjacent undisturbed waters. Nutrient concentrations for total P and N ranged from 42.5 × and 2.7 × greater in disturbed than undisturbed, respectively. Dissolved P and N were 26.8 × and 1.5 × greater, respectively, in disturbed versus undisturbed waters. Our experimental mimic created increases of total and dissolved P and N that were equivalent to pulses created by moose. This indicates that it is possible to experimentally test by proxy the potential impact of moose bioturbation on other ecosystem processes. This study is the first quantification of moose foraging as a consumer mechanism that influences the release of limiting nutrients in aquatic systems, thereby emphasizing the potential cascading importance for nutrient uptake and productivity of plants and microbes. Bump et al. 2016 DATA - Nutrient release from moose bioturbation in aquatic ecosystems - OikosExcel file of raw nutrient data for Bump et al. 2016 Nutrient release from moose bioturbation in aquatic ecosystems. Oikos.Bump et al. 2016 DATA - Nutrient release from moose bioturbation in aquatic ecosystems R2.xlsxFunding provided by: National Science FoundationCrossref Funder Registry ID: http://dx.doi.org/10.13039/100000001Award Number: US NSF 1545611