Data from: Marine latitudinal diversity gradients, niche conservatism, and out of the tropics and Arctic: climatic sensitivity of small organisms

Aim The latitudinal diversity gradient (LDG) is a consequence of evolutionary and ecological mechanisms acting over long history, and thus is best investigated with organisms that have rich fossil records. However, combined neontological-paleontological investigations are mostly limited to large, sh...

Full description

Bibliographic Details
Main Authors: Chiu, Wing Tung Ruby, Yasuhara, Moriaki, Cronin, Thomas, Hunt, Gene, Gemery, Laura, Wei, Chih-Lin
Format: Dataset
Language:unknown
Published: 2020
Subjects:
Online Access:https://zenodo.org/record/4308024
https://doi.org/10.5061/dryad.3n5tb2rcp
Description
Summary:Aim The latitudinal diversity gradient (LDG) is a consequence of evolutionary and ecological mechanisms acting over long history, and thus is best investigated with organisms that have rich fossil records. However, combined neontological-paleontological investigations are mostly limited to large, shelled invertebrates, which keeps our mechanistic understanding of LDGs in its infancy. This paper aims to describe the modern meiobenthic ostracod LDG and to explore the possible controlling factors and the evolutionary mechanisms of this large-scale biodiversity pattern. Location Present-day Western North Atlantic Taxon Ostracoda Methods We compiled census data from ostracods living in shallow marine environments of the western North Atlantic Ocean. Using these data, we documented the marine LDG with multiple metrics of alpha, beta (nestedness and turnover), and gamma diversity, and we tested whether macroecological patterns could be governed by different environmental factors, including temperature, salinity, dissolved oxygen, pH and primary productivity. We also explored the geologic age distribution of ostracod genera to investigate the evolutionary mechanisms underpinning the LDG. Results Our results show that temperature and climatic niche conservatism are important in setting LDGs of these small, poorly-dispersing organisms. We also found evidence for some dispersal-driven spatial dynamics in the ostracod LDG. Compared to patterns observed in marine bivalves, however, dispersal dynamics were weaker and they were bi-directional, rather than following the "out-of-the-tropics" model. Main Conclusions Our detailed analyses revealed that meiobenthic organisms, which comprise two-thirds of marine diversity, do not always follow the same rules as larger, better-studied organisms. Our findings suggest that the under-studied majority of biodiversity may be more sensitive to climate than are well-studied, large organisms. This implies that the impacts of ongoing Anthropocene climatic change on marine ecosystems may be ...