How do microorganisms from permafrost soils respond to short-term warming?

Arctic ecosystems outpace the global rate of temperature increases and are exceptionally susceptible to global warming. Concerns are raising that CO2 and CH4 released from thawing permafrost upon warming may induce a positive feedback to climate change. This is based on the assumption, that microbia...

Full description

Bibliographic Details
Main Authors: Martin, V., Wagner, J., Speetjens, N. J., Lodi, R., Horak, J., Urbina-Malo, C., Mohrlok, M., Rottensteiner, C., a' Campo, W., Durstewitz, L., Tanski, G., Fritz, M., Lantuit, H., Hugelius, G., Richter, A.
Format: Conference Object
Language:unknown
Published: 2020
Subjects:
Online Access:https://zenodo.org/record/4270435
https://doi.org/10.5194/egusphere-egu2020-13452
Description
Summary:Arctic ecosystems outpace the global rate of temperature increases and are exceptionally susceptible to global warming. Concerns are raising that CO2 and CH4 released from thawing permafrost upon warming may induce a positive feedback to climate change. This is based on the assumption, that microbial activity increases with warming and does not acclimate over time. However, we lack a mechanistic understanding of carbon and nutrient fluxes including their spatial control in the very heterogeneous Arctic landscape. The objective of this study therefore was to elucidate the microbial controls over soil organic matter decomposition in different horizons of the active layer and upper permafrost. We investigated different landscape units (high-centre polygons, low-centre polygons and flat polygon tundra) in two small catchments that differ in glacial history, at the Yukon coast, Northwestern Canada.