Earth Observation and model-derived aquaculture indicators report

Space available for aquaculture, in Europe as elsewhere, is in limited supply and high demand. Additional tools are required to support the identification of potential new sites and to assess their suitability and sustainability for various aquaculture segments. In this report, various aquaculture i...

Full description

Bibliographic Details
Main Authors: Palmer, Stephanie, Barillé, Laurent, Gernez, Pierre, Ciavatta, Stephano, Evers-King, Hayley, Kay, Susan, Kurekin, Andrey, Loveday, Benjamin, Miller, Peter, Wilson, Robert, Tsiaras, Kostas, Wallhead, Phil, Kristiansen, Trond, Staalstrøm, André, Dale, Trine, Bellerby, Richard
Format: Report
Language:unknown
Published: 2019
Subjects:
DEB
AZA
AIM
Online Access:https://zenodo.org/record/3581506
https://doi.org/10.5281/zenodo.3581506
Description
Summary:Space available for aquaculture, in Europe as elsewhere, is in limited supply and high demand. Additional tools are required to support the identification of potential new sites and to assess their suitability and sustainability for various aquaculture segments. In this report, various aquaculture indicators that were derived using satellite Earth Observation and modelling approaches as part of Tools for Assessment and Planning of Aquaculture Sustainability (TAPAS) are presented. These cover far-field, regional ecosystem-scale coastal and offshore aquaculture segments in different parts of Europe. Indicators specific to shellfish and finfish biology and farms are presented, as are more general biogeochemical indicators, and include the identification of current and forecasted future opportunities for aquaculture, as well as environmental risks to the industry. Specifically, satellite ocean-colour observations are used to produce maps of optical water types and suspended particulate matter extremes for the North East Atlantic and Mediterranean, and of harmful algal bloom risk in north-western European waters for the current period (Section 2; PML). Output from a 3D hydrodynamic-biogeochemical ocean model (POLCOMS-ERSEM) is used to produce indicators of current (early-century) and future (mid- and late-century) aquaculture suitability for the Mediterranean Sea and the North West European shelf sea, notably water temperature, phytoplankton and zooplankton biomass, and degree day modelled maps of Pacific oyster spawning and metamorphosis potential, under different climate scenarios (Representative Concentration Pathways 4.5 and 8.5; Section 3; PML). Section 3 output is used in further pan-European modelling of Pacific oyster growth potential via dynamic energy budget (DEB) theory, transformed into industry-relevant indicators for the early- and late-century scenarios (Section 4; UN). The evaluation of Mediterranean finfish Aquaculture Allocated Zone carrying capacity, through the modelling of near-surface currents, ...