A European aerosol phenomenology – 6: scattering properties of atmospheric aerosol particles from 28 ACTRIS sites

This paper presents the light-scattering properties of atmospheric aerosol particles measured over the past decade at 28 ACTRIS observatories, which are located mainly in Europe. The data include particle light scattering (sp) and hemispheric backscattering (bsp) coefficients, scattering Ångström ex...

Full description

Bibliographic Details
Main Authors: Marco Pandolfi, Lucas Alados-Arboledas, Andrés Alastuey, Marcos Andrade, Christo Angelov, Begoña Artiñano, John Backman, Urs Baltensperger, Paolo Bonasoni, Nicolas Bukowiecki, Martine Collaud Coen, Sébastien Conil, Esther Coz, Vincent Crenn, Vadimas Dudoitis, Marina Ealo, Kostas Eleftheriadis, Olivier Favez, Prodromos Fetfatzis, Markus Fiebig, Harald Flentje, Patrick Ginot, Martin Gysel, Bas Henzing, Andras Hoffer, Adela Holubova Smejkalova, Ivo Kalapov, Nikos Kalivitis, Giorgos Kouvarakis, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Chris Lunder, Krista Luoma, Hassan Lyamani, Angela Marinoni, Nikos Mihalopoulos, Marcel Moerman, José Nicolas, Colin O'Dowd, Tuukka Petäjä, Jean-Eudes Petit, Jean Marc Pichon, Nina Prokopciuk, Jean-Philippe Putaud, Sergio Rodríguez, Jean Sciare, Karine Sellegri, Erik Swietlicki, Gloria Titos, Thomas Tuch, Peter Tunved, Vidmantas Ulevicius, Aditya Vaishya, Milan Vana, Aki Virkkula, Stergios Vratolis, Ernest Weingartner, Alfred Wiedensohler, Paolo Laj
Format: Article in Journal/Newspaper
Language:unknown
Published: 2018
Subjects:
Online Access:https://zenodo.org/record/2644919
https://doi.org/10.5281/zenodo.2644919
Description
Summary:This paper presents the light-scattering properties of atmospheric aerosol particles measured over the past decade at 28 ACTRIS observatories, which are located mainly in Europe. The data include particle light scattering (sp) and hemispheric backscattering (bsp) coefficients, scattering Ångström exponent (SAE), backscatter fraction (BF) and asymmetry parameter (g). An increasing gradient of sp is observed when moving from remote environments (arctic/mountain) to regional and to urban environments. At a regional level in Europe, sp also increases when moving from Nordic and Baltic countries and from western Europe to central/eastern Europe, whereas no clear spatial gradient is observed for other station environments. The SAE does not show a clear gradient as a function of the placement of the station. However, a west-to-east-increasing gradient is observed for both regional and mountain placements, suggesting a lower fraction of fine-mode particle in western/south-western Europe compared to central and eastern Europe, where the fine-mode particles dominate the scattering. The g does not show any clear gradient by station placement or geographical location reflecting the complex relationship of this parameter with the physical properties of the aerosol particles. Both the station placement and the geographical location are important factors affecting the intraannual variability. At mountain sites, higher sp and SAE values are measured in the summer due to the enhanced boundary layer influence and/or new particle-formation episodes. Conversely, the lower horizontal and vertical dispersion during winter leads to higher sp values at all low-altitude sites in central and eastern Europe compared to summer. These sites also show SAE maxima in the summer (with corresponding g minima). At all sites, both SAE and g show a strong variation with aerosol particle loading. The lowest values of g are always observed together with low sp values, indicating a larger contribution from particles in the smaller accumulation mode. ...