Summary: | Spatial predictions of the probability of a good morpho-ecological state are provided for Finnish palsa mires as a TIFF file with a 10 m resolution, using the EUREF FIN TM35FIN coordinate system. These predictions were produced through spatial modeling that combined classified point data on the state of Finnish palsa mires (Ruuhijärvi et al., 2022) with high-resolution (10 m) environmental datasets. The predictions were computed for the extent of palsa mires (Tammilehto et al., 2024). Modelling was conducted in mgcv package (version 1.9.0; Wood, 2011) in R (version 4.3.2; R Core Team 2023). The predictions were developed during the preparation of the manuscript: "The morpho-ecological state of palsa mires in sub-arctic Fennoscandia: insights from high-resolution spatial modelling" (Leppiniemi et al., 2024, in-review). References: Leppiniemi, O., Karjalainen, O., Aalto, J., Yletyinen., E., Luoto, M., & Hjort, J. 2024. The morpho-ecological state of palsa mires in sub-arctic Fennoscandia: insights from high-resolution spatial modelling. (In-review). R Core Team (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (accessed 14 October 2024). Ruuhijärvi, R., Salminen, P., & Tuominen, S., 2022. Distribution range, morphological types, and state of palsa mires in Finland in the 2010s. Suo 73, 1–32. (In Finnish with English summary). Tammilehto, A., Härmä, P., Kallio, M., Törmä, M., Saikkonen, A., Tuominen, S., Impiö, M., Heikkinen, M., Kervinen, M., Jussila, T., Böttcher, K., Pääkkö, E., Kokko, A., Mäkelä, K., & Anttila, S., 2024. Ylä-Lapin luonnon kaukokartoitus – Projektin loppuraportti osa 1 – Aineistot ja menetelmät. Vantaa. (In Finnish). Wood, S.N., 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Series B Stat. Methodol. 73, 3–36. https://doi.org/10.1111/J.1467-9868.2010.00749.X
|