Broadband acoustic backscatter from crude oil under laboratory-grown sea ice

Author Posting. © Acoustical Society of America, 2016. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 140 (2016): 2274–2287, doi:10.1121/1.496387...

Full description

Bibliographic Details
Published in:The Journal of the Acoustical Society of America
Main Authors: Bassett, Christopher, Lavery, Andone C., Maksym, Ted
Format: Article in Journal/Newspaper
Language:English
Published: Acoustical Society of America 2016
Subjects:
Online Access:https://hdl.handle.net/1912/8494
Description
Summary:Author Posting. © Acoustical Society of America, 2016. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 140 (2016): 2274–2287, doi:10.1121/1.4963876. In ice-covered seas, traditional air-side oil spill detection methods face practical challenges. Conversely, under-ice remote sensing techniques are increasingly viable due to improving operational capabilities of autonomous and remotely operated vehicles. To investigate the potential for under-ice detection of oil spills using active acoustics, laboratory measurements of high-frequency, broadband backscatter (75–590 kHz) from crude oil layers (0.7–8.1 cm) under and encapsulated within sea ice were performed at normal and 20 incidence angles. Discrete interfaces (water-oil, oil-ice, and ice-oil) are identifiable in observations following oil injections under the ice and during the subsequent encapsulation. A one-dimensional model for the total normal incidence backscatter from oil under ice, constrained by oil sound speed measurements from 10 C to 20 C and improved environmental measurements compared to previous studies, agrees well with preencapsulation observations. At 20 incidence angles echoes from the ice and oil under ice are more complex and spatially variable than normal incidence observations, most likely due to interface roughness and volume inhomogeneities. Encapsulated oil layers are only detected at normal incidence. The results suggest that high-frequency, broadband backscatter techniques may allow under-ice remote sensing for the detection and quantification of oil spills. Funding for this research was provided by the International Oil and Gas Producers Arctic Oil Spill Technology Joint Industry Programme under Contract No. 28-13-14. C.B. was supported by the WHOI Postdoctoral Scholar Program with funding from the United States Geological Survey. A.C.L. was supported in part by the Ocean ...