A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations

Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 21 (2206): PA2002, doi:10.1029/2005PA001203. We estimate tropical Atlantic up...

Full description

Bibliographic Details
Published in:Paleoceanography
Main Authors: Bice, Karen L., Birgel, Daniel, Meyers, Philip A., Dahl, Kristina A., Hinrichs, Kai-Uwe, Norris, Richard D.
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union 2006
Subjects:
Online Access:https://hdl.handle.net/1912/846
Description
Summary:Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 21 (2206): PA2002, doi:10.1029/2005PA001203. We estimate tropical Atlantic upper ocean temperatures using oxygen isotope and Mg/Ca ratios in well-preserved planktonic foraminifera extracted from Albian through Santonian black shales recovered during Ocean Drilling Program Leg 207 (North Atlantic Demerara Rise). On the basis of a range of plausible assumptions regarding seawater composition at the time the data support temperatures between 33° and 42°C. In our low-resolution data set spanning ~84–100 Ma a local temperature maximum occurs in the late Turonian, and a possible minimum occurs in the mid to early late Cenomanian. The relation between single species foraminiferal δ18O and Mg/Ca suggests that the ratio of magnesium to calcium in the Turonian-Coniacian ocean may have been lower than in the Albian-Cenomanian ocean, perhaps coincident with an ocean 87Sr/86Sr minimum. The carbon isotopic compositions of distinct marine algal biomarkers were measured in the same sediment samples. The δ13C values of phytane, combined with foraminiferal δ13C and inferred temperatures, were used to estimate atmospheric carbon dioxide concentrations through this interval. Estimates of atmospheric CO2 concentrations range between 600 and 2400 ppmv. Within the uncertainty in the various proxies, there is only a weak overall correspondence between higher (lower) tropical temperatures and more (less) atmospheric CO2. The GENESIS climate model underpredicts tropical Atlantic temperatures inferred from ODP Leg 207 foraminiferal δ18O and Mg/Ca when we specify approximate CO2 concentrations estimated from the biomarker isotopes in the same samples. Possible errors in the temperature and CO2 estimates and possible deficiencies in the model are discussed. The potential for and effects of substantially higher ...