Nitrogen cycling in the deep sedimentary biosphere : nitrate isotopes in porewaters underlying the oligotrophic North Atlantic

© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 12 (2015): 7483-7502, doi:10.5194/bg-12-7483-2015. Nitrogen (N) is a key component of fundamental biomolecules. Hence, its cycling an...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Wankel, Scott D., Buchwald, Carolyn, Ziebis, Wiebke, Wenk, Christine B., Lehmann, Moritz F.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications on behalf of the European Geosciences Union 2015
Subjects:
Online Access:https://hdl.handle.net/1912/7760
Description
Summary:© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 12 (2015): 7483-7502, doi:10.5194/bg-12-7483-2015. Nitrogen (N) is a key component of fundamental biomolecules. Hence, its cycling and availability are central factors governing the extent of ecosystems across the Earth. In the organic-lean sediment porewaters underlying the oligotrophic ocean, where low levels of microbial activity persist despite limited organic matter delivery from overlying water, the extent and modes of nitrogen transformations have not been widely investigated. Here we use the N and oxygen (O) isotopic composition of porewater nitrate (NO3−) from a site in the oligotrophic North Atlantic (Integrated Ocean Drilling Program – IODP) to determine the extent and magnitude of microbial nitrate production (via nitrification) and consumption (via denitrification). We find that NO3- accumulates far above bottom seawater concentrations (~ 21 μM) throughout the sediment column (up to ~ 50 μM) down to the oceanic basement as deep as 90 m b.s.f. (below sea floor), reflecting the predominance of aerobic nitrification/remineralization within the deep marine sediments. Large changes in the δ15N and δ18O of nitrate, however, reveal variable influence of nitrate respiration across the three sites. We use an inverse porewater diffusion–reaction model, constrained by the N and O isotope systematics of nitrification and denitrification and the porewater NO3- isotopic composition, to estimate rates of nitrification and denitrification throughout the sediment column. Results indicate variability of reaction rates across and within the three boreholes that are generally consistent with the differential distribution of dissolved oxygen at this site, though not necessarily with the canonical view of how redox thresholds separate nitrate regeneration from dissimilative consumption spatially. That is, we provide stable isotopic evidence for expanded ...