Water exchange between the continental shelf and the cavity beneath Nioghalvfjerdsbræ (79 North Glacier)

Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 7648–7654, doi:10.1002/2015GL064944. The mass loss at...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Wilson, Nathaniel J., Straneo, Fiamma
Format: Article in Journal/Newspaper
Language:English
Published: John Wiley & Sons 2015
Subjects:
Online Access:https://hdl.handle.net/1912/7641
Description
Summary:Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 7648–7654, doi:10.1002/2015GL064944. The mass loss at Nioghalvfjerdsbræ is primarily due to rapid submarine melting. Ocean data obtained from beneath the Nioghalvfjerdsbræ ice tongue show that melting is driven by the presence of warm (1°C) Atlantic Intermediate Water (AIW). A sill prevents AIW from entering the cavity from Dijmphna Sund, requiring that it flow into the cavity via bathymetric channels to the south at a pinned ice front. Comparison of water properties from the cavity, Dijmphna Sund, and the continental shelf support this conclusion. Overturning circulation rates inferred from observed melt rates and cavity stratification suggest an exchange flow between the cavity and the continental shelf of 38mSv, sufficient to flush cavity waters in under 1 year. These results place upper bounds on the timescales of external variability that can be transmitted to the glacier via the ice tongue cavity. NASA Grant Number: NNX13AK88G, NSF Grant Number: OCE-1434041 2016-03-22