Spreading of Greenland meltwaters in the ocean revealed by noble gases

Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 7705–7713, doi:10.1002/2015GL065003. We present the fi...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Beaird, Nicholas, Straneo, Fiamma, Jenkins, William J.
Format: Article in Journal/Newspaper
Language:English
Published: John Wiley & Sons 2015
Subjects:
Online Access:https://hdl.handle.net/1912/7631
Description
Summary:Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 7705–7713, doi:10.1002/2015GL065003. We present the first noble gas observations in a proglacial fjord in Greenland, providing an unprecedented view of surface and submarine melt pathways into the ocean. Using Optimum Multiparameter Analysis, noble gas concentrations remove large uncertainties inherent in previous studies of meltwater in Greenland fjords. We find glacially modified waters with submarine melt concentrations up to 0.66 ± 0.09% and runoff 3.9 ± 0.29%. Radiogenic enrichment of Helium enables identification of ice sheet near-bed melt (0.48 ± 0.08%). We identify distinct regions of meltwater export reflecting heterogeneous melt processes: a surface layer of both runoff and submarine melt and an intermediate layer composed primarily of submarine melt. Intermediate ocean waters carry the majority of heat to the fjords' glaciers, and warmer deep waters are isolated from the ice edge. The average entrainment ratio implies that ocean water masses are upwelled at a rate 30 times the combined glacial meltwater volume flux. We gratefully acknowledge funding from WHOI's Ocean and Climate Change Institute, the Doherty Postdoctoral Scholarship, and ship time from the Advanced Climate Dynamics Summer School (SiU grant NNA-2012/10151). 2016-03-30