Acidification reduced growth rate but not swimming speed of larval sea urchins

© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 5 (2015): 9764, doi:10.1038/srep09764. Swimming behaviors of planktonic larvae impact dispersal and population dynamics of many b...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Chan, Kit Yu Karen, Garcia, Eliseba, Dupont, Sam
Format: Article in Journal/Newspaper
Language:English
Published: Nature Publishing Group 2015
Subjects:
Online Access:https://hdl.handle.net/1912/7359
Description
Summary:© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 5 (2015): 9764, doi:10.1038/srep09764. Swimming behaviors of planktonic larvae impact dispersal and population dynamics of many benthic marine invertebrates. This key ecological function is modulated by larval development dynamics, biomechanics of the resulting morphology, and behavioral choices. Studies on ocean acidification effects on larval stages have yet to address this important interaction between development and swimming under environmentally-relevant flow conditions. Our video motion analysis revealed that pH covering present and future natural variability (pH 8.0, 7.6 and 7.2) did not affect age-specific swimming of larval green urchin Strongylocentrotus droebachiensis in still water nor in shear, despite acidified individuals being significantly smaller in size (reduced growth rate). This maintenance of speed and stability in shear was accompanied by an overall change in size-corrected shape, implying changes in swimming biomechanics. Our observations highlight strong evolutionary pressure to maintain swimming in a varying environment and the plasticity in larval responses to environmental change. K.C. was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution (WHOI), with funding provided by the Coastal Ocean Institute, the Croucher Foundation, and the Royal Swedish Academy of Sciences. S.D. was financially supported by the Linnaeus Centre for Marine Evolutionary Biology at the University of Gothenburg (http://www.cemeb.science.gu.se/) and a Linnaeus grant from the Swedish Research Councils VR and Formas. Additional funding was provided from the European Seventh Framework Programme under grant agreement 265847.