An inland sea high nitrate-low chlorophyll (HNLC) region with naturally high pCO2

© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography 60 (2015): 957–966, doi:10.1002/lno.10062. We present a time series of data for temperature, salinity, nitrate, and carbo...

Full description

Bibliographic Details
Published in:Limnology and Oceanography
Main Authors: Murray, James W., Roberts, Emily, Howard, Evan M., O'Donnell, Michael, Bantam, Cory, Carrington, Emily, Foy, Mike, Paul, Barbara, Fay, Amanda
Format: Article in Journal/Newspaper
Language:English
Published: John Wiley & Sons 2015
Subjects:
Online Access:https://hdl.handle.net/1912/7356
Description
Summary:© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography 60 (2015): 957–966, doi:10.1002/lno.10062. We present a time series of data for temperature, salinity, nitrate, and carbonate chemistry from September 2011 to July 2013 at the University of Washington's Friday Harbor Laboratories. Samples were collected at the Friday Harbor dock and pump house. Seawater conditions at Friday Harbor were high nitrate-low chlorophyll, with average nitrate and pCO2 concentrations of ∼ 25 ± 5 μmol L−1 and ∼ 700 ± 103 μatm (pH 7.80 ± 0.06). Transient decreases in surface water nitrate and pCO2 corresponded with the timing of a spring bloom (April through June). The high nitrate and pCO2 originate from the high values for these parameters in the source waters to the Salish Sea from the California Undercurrent (CU). These properties are due to natural aerobic respiration in the region where the CU originates, which is the oxygen minimum zone in the eastern tropical North Pacific. Alkalinity varies little so the increase in pCO2 is due to inputs of dissolved inorganic carbon (DIC). This increase in DIC can come from both natural aerobic respiration within the ocean and input of anthropogenic CO2 from the atmosphere when the water was last at the sea surface. We calculated that the anthropogenic “ocean acidification” contribution to DIC in the source waters of the CU was 36 μmol L−1. This contribution ranged from 13% to 22% of the total increase in DIC, depending on which stoichiometry was used for C/O2 ratio (Redfield vs. Hedges). The remaining increase in DIC was due to natural aerobic respiration. We thank The Educational Foundation of America (EFA) and National Science Foundation Field Station Marine Lab Program (FSML) (NSF DBI 0829486) for essential initial funding to JWM to develop the Ocean Acidification Experimental Lab (OAEL). Additional support was provided by NSF award EF1041213 to E. Carrington ...