Preface

Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 1-5, doi:10.1016/...

Full description

Bibliographic Details
Published in:Deep Sea Research Part II: Topical Studies in Oceanography
Main Authors: Anderson, Donald M., McGillicuddy, Dennis J., DeGrasse, Stacey L., Sellner, Kevin G., Bricelj, V. Monica, Turner, Jefferson T., Townsend, David W., Kleindinst, Judith L.
Format: Report
Language:English
Published: 2014
Subjects:
Online Access:https://hdl.handle.net/1912/6797
Description
Summary:Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 103 (2014): 1-5, doi:10.1016/j.dsr2.2014.02.007. The Gulf of Maine (GOM) is a continental shelf sea in the northwest Atlantic, USA that supports highly-productive shellfisheries that are frequently contaminated by toxigenic Alexandrium fundyense blooms and outbreaks of paralytic shellfish poisoning (PSP), resulting in significant economic and social impacts. Additionally, an emerging threat to these resources is from blooms of toxic Pseudo-nitzschia species that produce domoic acid, the toxin responsible for amnesic shellfish poisoning (ASP). Nearshore shellfish toxins are monitored by state agencies, whereas most offshore stocks have had little or no routine monitoring. As a result, large areas of federal waters have been indefinitely closed or their shellfish beds underexploited because of the potential risk these toxins pose and the lack of scientific understanding and management tools. Patterns and dynamics of Alexandrium blooms and the resulting shellfish toxicity in nearshore waters were examined in a number of research projects, the largest being the Ecology and Oceanography of Harmful Algal Blooms (ECOHAB)-Gulf of Maine (GOM), a five-year regional program emphasizing field surveys, laboratory studies and numerical modeling. At the completion of the ECOHAB-GOM program (documented in Anderson et al., 2005), great progress was made in understanding A. fundyense blooms and resulting shellfish toxicity in nearshore waters, but there were major unknowns that still required investigation. For example, little was known about A. fundyense bloom dynamics in the waters south and east of Cape Cod, Massachusetts, and in particular, about the link between blooms in surface waters and toxicity in deep offshore shellfish. Large areas of offshore shellfish ...