Summary: | Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 496-508, doi:10.1002/2013JC009346. Observational studies have shown that an unprecedented warm anomaly has recently affected the temperature of the Atlantic Water (AW) layer lying at intermediate depth in the Arctic Ocean. Using observations from four profiling moorings, deployed in the interior of the Canada Basin between 2003 and 2011, the upward diffusive vertical heat flux from this layer is quantified. Vertical diffusivity is first estimated from a fine-scale parameterization method based on CTD and velocity profiles. Resulting diffusive vertical heat fluxes from the AW are in the range 0.1–0.2 W m−2 on average. Although large over the period considered, the variations of the AW temperature maximum yields small variations for the temperature gradient and thus the vertical diffusive heat flux. In most areas, variations in upward diffusive vertical heat flux from the AW have only a limited effect on temperature variations of the overlying layer. However, the presence of eddies might be an effective mechanism to enhance vertical heat transfer, although the small number of eddies sampled by the moorings suggest that this mechanism remains limited and intermittent in space and time. Finally, our results suggest that computing diffusive vertical heat flux with a constant vertical diffusivity of ∼2 × 10−6 m2 s−1 provides a reasonable estimate of the upward diffusive heat transfer from the AW layer, although this approximation breaks down in the presence of eddies. C. Lique acknowledge support from JISAO and the Program on Climate Change of the University of Washington. J. Guthrie and J. Morison are supported by National Science Foundation grants ARC-0909408 and ARC-0856330. M. Steele is supported by the Office of Naval Researches Arctic and Global ...
|