Evaluation of the Southern Ocean O2/Ar-based NCP estimates in a model framework

Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 118 (2013): 385–399, doi:10.1002/jgrg.20032. T...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Biogeosciences
Main Authors: Jonsson, Bror F., Doney, Scott C., Dunne, John P., Bender, Michael L.
Format: Article in Journal/Newspaper
Language:English
Published: John Wiley & Sons 2013
Subjects:
GCM
Online Access:https://hdl.handle.net/1912/6296
Description
Summary:Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 118 (2013): 385–399, doi:10.1002/jgrg.20032. The sea-air biological O2 flux assessed from measurements of surface O2 supersaturation in excess of Ar supersaturation (“O2 bioflux”) is increasingly being used to constrain net community production (NCP) in the upper ocean mixed layer. In making these calculations, one generally assumes that NCP is at steady state, mixed layer depth is constant, and there is no O2 exchange across the base of the mixed layer. The object of this paper is to evaluate the magnitude of errors introduced by violations of these assumptions. Therefore, we examine the differences between the sea-air biological O2 flux and NCP in the Southern Ocean mixed layer as calculated using two ocean biogeochemistry general circulation models. In this approach, NCP is considered a known entity in the prognostic model, whereas O2 bioflux is estimated using the model-predicted O2/Ar ratio to compute the mixed layer biological O2 saturation and the gas transfer velocity to calculate flux. We find that the simulated biological O2 flux gives an accurate picture of the regional-scale patterns and trends in model NCP. However, on local scales, violations of the assumptions behind the O2/Ar method lead to significant, non-uniform differences between model NCP and biological O2 flux. These errors arise from two main sources. First, venting of biological O2 to the atmosphere can be misaligned from NCP in both time and space. Second, vertical fluxes of oxygen across the base of the mixed layer complicate the relationship between NCP and the biological O2 flux. Our calculations show that low values of O2 bioflux correctly register that NCP is also low (<10 mmol m−2 day−1), but fractional errors are large when rates are this low. Values between 10 and 40 mmol ...