Net atmospheric mercury deposition to Svalbard : estimates from lacustrine sediments

Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Atmospheric Environment 59 (2012): 509-513, doi:10.1016/j.atmosenv.2012.05.048. In...

Full description

Bibliographic Details
Published in:Atmospheric Environment
Main Authors: Drevnick, Paul E., Yang, Handong, Lamborg, Carl H., Rose, Neil L.
Format: Report
Language:English
Published: 2012
Subjects:
Online Access:https://hdl.handle.net/1912/5252
Description
Summary:Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Atmospheric Environment 59 (2012): 509-513, doi:10.1016/j.atmosenv.2012.05.048. In this study we used lake sediments, which faithfully record Hg inputs, to derive estimates of net atmospheric Hg deposition to Svalbard, Norwegian Arctic. With the exception of one site affected by local pollution, the study lakes show twofold to fivefold increases in sedimentary Hg accumulation since 1850, likely due to long-range atmospheric transport and deposition of anthropogenic Hg. Sedimentary Hg accumulation in these lakes is a linear function of the ratio of catchment area to lake area, and we used this relationship to model net atmospheric Hg flux: preindustrial and modern estimates are 2.5±3.3 μg/m2/y and 7.0±3.0 μg/m2/y, respectively. The modern estimate, by comparison with data for Hg wet deposition, indicates that atmospheric mercury depletion events (AMDEs) or other dry deposition processes contribute approximately half (range 0-70%) of the net flux. Hg from AMDEs may be moving in significant quantities into aquatic ecosystems, where it is a concern because of contamination of aquatic food webs. Funding was provided by an NSERC Discovery Grant (Drevnick) and the Norges forskningsråd (grant number 107745/730).