Contrasting sensitivity to extreme winter warming events of dominant sub-Arctic heathland bryophyte and lichen species

Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Journal of Ecology 99 (2011): 1481-1488, doi:10.1111/j.1365-2745.2011.01859...

Full description

Bibliographic Details
Published in:Journal of Ecology
Main Authors: Bjerke, Jarle W., Bokhorst, Stef, Zielke, Matthias, Callaghan, Terry V., Bowles, Francis W., Phoenix, Gareth K.
Format: Report
Language:English
Published: 2010
Subjects:
Online Access:https://hdl.handle.net/1912/4944
Description
Summary:Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Journal of Ecology 99 (2011): 1481-1488, doi:10.1111/j.1365-2745.2011.01859.x. Climate change in northern high latitudes is predicted to be greater in winter rather than summer, yet little is known about the effects of winter climate change on northern ecosystems. Among the unknowns are the effects of an increasing frequency of acute, short-lasting winter warming events. Such events can damage higher plants exposed to warm, then returning cold, temperatures after snow melt and it is not known how bryophytes and lichens, which are of considerable ecological importance in high-latitude ecosystems, are affected by such warming events. However, even physiological adaptations of these cryptogams to winter environments in general are poorly understood. Here we describe findings from a novel field experiment that uses heating from infrared lamps and soil warming cables to simulate acute mid-winter warming events in a sub-Arctic heath. In particular, we report the growing season responses of the dominant lichen, Peltigera aphthosa, and bryophyte, Hylocomium splendens, to warming events in three consecutive winters. While summertime photosynthetic performance of P. aphthosa was unaffected by the winter warming treatments, H. splendens showed significant reductions of net photosynthetic rates and growth rates (of up to 48% and 52% respectively). Negative effects were evident already during the summer following the first winter warming event. While the lichen develops without going through critical phenological stages during which vulnerable organs are produced, the moss has a seasonal rhythm, which includes initiation of growth of young, freeze-susceptible shoot apices in the early growing season; these might be damaged by breaking of dormancy during warm winter events. Synthesis. Different sensitivities ...