What is the fate of the river waters of Hudson Bay?

Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Marine Systems 88 (2011): 352-361, doi:10.1016/j.jmarsys.2011.02.004. We...

Full description

Bibliographic Details
Published in:Journal of Marine Systems
Main Authors: St-Laurent, Pierre, Straneo, Fiamma, Dumais, J.-F., Barber, David G.
Format: Report
Language:English
Published: 2011
Subjects:
Online Access:https://hdl.handle.net/1912/4904
Description
Summary:Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Marine Systems 88 (2011): 352-361, doi:10.1016/j.jmarsys.2011.02.004. We examine the freshwater balance of Hudson and James bays, two shallow and fresh seas that annually receive 12% of the pan- Arctic river runoff. The analyses use the results from a 3–D sea ice-ocean coupled model with realistic forcing for tides, rivers, ocean boundaries, precipitation, and winds. The model simulations show that the annual freshwater balance is essentially between the river input and a large outflow toward the Labrador shelf. River waters are seasonally exchanged from the nearshore region to the interior of the basin, and the volumes exchanged are substantial (of the same order of magnitude as the annual river input). This lateral exchange is mostly caused by Ekman transport, and its magnitude and variability are controlled by the curl of the stress at the surface of the basin. The average transit time of the river waters is 3.0 years, meaning that the outflow is a complex mixture of the runoff from the three preceding years. We thank NSERC and the Canada Research Chairs program for funding. FS acknowledges support from NSF OCE-0751554 and ONR N00014-08-10490.