Low frequency vocalizations attributed to sei whales (Balaenoptera borealis)

Author Posting. © Acoustical Society of America, 2008. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 124 (2008): 1339-1349, doi:10.1121/1.294515...

Full description

Bibliographic Details
Published in:The Journal of the Acoustical Society of America
Main Authors: Baumgartner, Mark F., Van Parijs, Sofie M., Wenzel, Frederick W., Tremblay, Christopher J., Esch, H. Carter, Warde, Ann M.
Format: Article in Journal/Newspaper
Language:English
Published: Acoustical Society of America 2008
Subjects:
Online Access:https://hdl.handle.net/1912/4618
Description
Summary:Author Posting. © Acoustical Society of America, 2008. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 124 (2008): 1339-1349, doi:10.1121/1.2945155. Low frequency (<100 Hz) downsweep vocalizations were repeatedly recorded from ocean gliders east of Cape Cod, MA in May 2005. To identify the species responsible for this call, arrays of acoustic recorders were deployed in this same area during 2006 and 2007. 70 h of collocated visual observations at the center of each array were used to compare the localized occurrence of this call to the occurrence of three baleen whale species: right, humpback, and sei whales. The low frequency call was significantly associated only with the occurrence of sei whales. On average, the call swept from 82 to 34 Hz over 1.4 s and was most often produced as a single call, although pairs and (more rarely) triplets were occasionally detected. Individual calls comprising the pairs were localized to within tens of meters of one another and were more similar to one another than to contemporaneous calls by other whales, suggesting that paired calls may be produced by the same animal. A synthetic kernel was developed to facilitate automatic detection of this call using spectrogram-correlation methods. The optimal kernel missed 14% of calls, and of all the calls that were automatically detected, 15% were false positives. Funding was provided by the NOAA National Marine Fisheries Service and the WHOI Ocean Life Institute.