Hydrographic changes in the eastern subpolar North Atlantic during the last deglaciation

Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Quaternary Science Reviews 29 (2010): 3336-3345, doi:10.1016/j.quascirev.2010.08.01...

Full description

Bibliographic Details
Published in:Quaternary Science Reviews
Main Authors: Benway, Heather M., McManus, Jerry F., Oppo, Delia W., Cullen, James L.
Format: Report
Language:English
Published: 2010
Subjects:
Online Access:https://hdl.handle.net/1912/4195
Description
Summary:Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Quaternary Science Reviews 29 (2010): 3336-3345, doi:10.1016/j.quascirev.2010.08.013. Millennial-scale climate fluctuations of the last deglaciation have been tied to abrupt changes in the Atlantic Meridional Overturning Circulation (MOC). A key to understanding mechanisms of MOC collapse and recovery is the documentation of upper ocean hydrographic changes in the vicinity of North Atlantic deep convection sites. Here we present new high-resolution ocean temperature and δ18Osw records spanning the last deglaciation from an eastern subpolar North Atlantic site that lies along the flow path of the North Atlantic Current, approaching deep convection sites in the Labrador and Greenland-Iceland-Norwegian (GIN) Seas. High-resolution temperature and δ18Osw records from subpolar Site 980 help track the movement of the subpolar/subtropical front associated with temperature and Atlantic MOC changes throughout the last deglaciation. Distinct δ18Osw minima during Heinrich-1 (H1) and the Younger Dryas (YD) correspond with peaks in ice-rafted debris and periods of reduced Atlantic MOC, indicating the presence of melt water in this region that could have contributed to MOC reductions during these intervals. Increased tropical and subtropical δ18Osw during these periods of apparent freshening in the subpolar North Atlantic suggest a buildup of salt at low latitudes that served as a negative feedback on reduced Atlantic MOC. Support for this research was provided by the U.S. National Science Foundation (JFM and DWO) and a postdoctoral scholarship funded in part by the Gary Comer Science and Education Foundation (HB).