Time-dependent response of a zonally averaged ocean–atmosphere–sea ice model to Milankovitch forcing

Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer-Verlag for personal use, not for redistribution. The definitive version was published in Climate Dynamics 6 (2010): 763-779, doi:10.1007/s00382-010-0790-6. An ocean-atmos...

Full description

Bibliographic Details
Published in:Climate Dynamics
Main Authors: Antico, Andres, Marchal, Olivier, Mysak, Lawrence A.
Format: Report
Language:English
Published: 2010
Subjects:
Online Access:https://hdl.handle.net/1912/4132
Description
Summary:Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer-Verlag for personal use, not for redistribution. The definitive version was published in Climate Dynamics 6 (2010): 763-779, doi:10.1007/s00382-010-0790-6. An ocean-atmosphere-sea ice model is developed to explore the time-dependent response of climate to Milankovitch forcing for the time interval 5-3 Myr BP. The ocean component is a zonally averaged model of the circulation in five basins (Arctic, Atlantic, Indian, Pacific, and Southern Oceans). The atmospheric component is a one-dimensional (latitudinal) energy balance model, and the sea-ice component is a thermodynamic model. Two numerical experiments are conducted. The first experiment does not include sea ice and the Arctic Ocean; the second experiment does. Results from the two experiments are used to investigate (i) the response of annual mean surface air and ocean temperatures to Milankovitch forcing, and (ii) the role of sea ice in this response. In both experiments, the response of air temperature is dominated by obliquity cycles at most latitudes. On the other hand, the response of ocean temperature varies with latitude and depth. Deep water formed between 45°N-65°N in the Atlantic Ocean mainly responds to precession. In contrast, deep water formed south of 60°S responds to obliquity when sea ice is not included. Sea ice acts as a time-integrator of summer insolation changes such that annual mean sea-ice conditions mainly respond to obliquity. Thus, in the presence of sea ice, air temperature changes over the sea ice are amplified, and temperature changes in deep water of southern origin are suppressed since water below sea ice is kept near the freezing point. This work was supported by an NSERC Discovery Grant awarded to L.A.M. We also thank GEC3 for a Network Grant.