Atmospheric forcing validation for modeling the central Arctic

Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 34 (2007): L20706, doi:10.1029/2007GL031378. We compare daily dat...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Makshtas, A., Atkinson, D., Kulakov, M., Shutilin, S., Krishfield, Richard A., Proshutinsky, Andrey
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union 2007
Subjects:
Online Access:https://hdl.handle.net/1912/3350
Description
Summary:Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 34 (2007): L20706, doi:10.1029/2007GL031378. We compare daily data from the National Center for Atmospheric Research and National Centers for Environmental Prediction “Reanalysis 1” project with observational data obtained from the North Pole drifting stations in order to validate the atmospheric forcing data used in coupled ice-ocean models. This analysis is conducted to assess the role of errors associated with model forcing before performing model verifications against observed ocean variables. Our analysis shows an excellent agreement between observed and reanalysis sea level pressures and a relatively good correlation between observed and reanalysis surface winds. The observed temperature is in good agreement with reanalysis data only in winter. Specific air humidity and cloudiness are not reproduced well by reanalysis and are not recommended for model forcing. An example sensitivity study demonstrates that the equilibrium ice thickness obtained using NP forcing is two times thicker than using reanalysis forcing. This research is supported by the National Science Foundation Office of Polar Programs (under Cooperative Agreements Nos. OPP-0002239 and OPP-0327664) with the International Arctic Research Center, University of Alaska Fairbanks, NSF grant OPP- 0424864 and by Russian Foundation for Basic Research, No. 07-05-13576.