Impacts of extreme winter warming events on litter decomposition in a sub-Arctic heathland

Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Soil Biology and Biochemistry 42 (2010): 611-617, doi:10.1016/j.soilbio.2009.12.011...

Full description

Bibliographic Details
Published in:Soil Biology and Biochemistry
Main Authors: Bokhorst, Stef, Bjerke, Jarle W., Melillo, Jerry M., Callaghan, Terry V., Phoenix, Gareth K.
Format: Report
Language:English
Published: 2009
Subjects:
Online Access:https://hdl.handle.net/1912/3123
Description
Summary:Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Soil Biology and Biochemistry 42 (2010): 611-617, doi:10.1016/j.soilbio.2009.12.011. Arctic climate change is expected to lead to a greater frequency of extreme winter warming events. During these events, temperatures rapidly increase to well above 0ºC for a number of days, which can lead to snow melt at the landscape scale, loss of insulating snow cover and warming of soils. However, upon return of cold ambient temperatures, soils can freeze deeper and may experience more freeze-thaw cycles due to the absence of a buffering snow layer. Such loss of snow cover and changes in soil temperatures may be critical for litter decomposition since a stable soil microclimate during winter (facilitated by snow cover) allows activity of soil organisms. Indeed, a substantial part of fresh litter decomposition may occur in winter. However, the impacts of extreme winter warming events on soil processes such as decomposition have never before been investigated. With this study we quantify the impacts of winter warming events on fresh litter decomposition using field simulations and lab studies. Winter warming events were simulated in sub-Arctic heathland using infrared heating lamps and soil warming cables during March (typically the period of maximum snow depth) in three consecutive years of 2007, 2008, and 2009. During the winters of 2008 and 2009, simulations were also run in January (typically a period of shallow snow cover) on separate plots. The lab study included soil cores with and without fresh litter subjected to winter warming simulations in climate chambers. Litter decomposition of common plant species was unaffected by winter warming events simulated either in the lab (litter of Betula pubescens ssp. czerepanovii), or field (litter of Vaccinium vitis-idaea, and B. pubescens ssp. czerepanovii) with the ...