Retreat of the Laurentide ice sheet tracked by the isotopic composition of Pb in western North Atlantic seawater during termination 1

Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 286 (2009): 546-555, doi:10.1016/j.epsl.2009.07...

Full description

Bibliographic Details
Published in:Earth and Planetary Science Letters
Main Authors: Gutjahr, Marcus, Frank, Martin, Halliday, Alex N., Keigwin, Lloyd D.
Format: Report
Language:English
Published: 2009
Subjects:
Online Access:https://hdl.handle.net/1912/3069
Description
Summary:Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 286 (2009): 546-555, doi:10.1016/j.epsl.2009.07.020. During the Last Glacial Maximum much of North America was covered by the Laurentide ice sheet. Its melting during termination 1 led to systematic changes in proglacial lake formation, continental runoff, and possibly North Atlantic Meridional Overturning Circulation. The accompanying change in chemical weathering rates in the interior of North America throughout the deglaciation resulted in a pronounced change in seawater Pb isotope composition in the western North Atlantic Ocean. Here we present the first high-resolution records of seawater Pb isotope variations of North Atlantic Deep Water extracted from authigenic Fe-Mn oxyhydroxides in three sediment cores (51GGC, 1790 m depth; 31GGC, 3410 m depth; 12JPC, 4250 m depth) from the Blake Ridge off Florida. These data reveal a striking excursion from relatively unradiogenic 206Pb/204Pb as low as 18.93 towards highly radiogenic Pb isotope compositions that was initiated during the Bølling-Allerød interstadial and was most pronounced in both intermediate and deep waters during and after the Younger Dryas (206Pb/204Pb as high as 19.38 at 8.8 ka in 4250 m). This pattern is interpreted to be a direct function of increased inflow of continent-derived radiogenic Pb into the western North Atlantic, supplied through chemical weathering of North American rocks that had been eroded and freshly exposed during the preceding glacial cycle. These sediment-derived data are complemented by new laser ablation Pb isotope data from a ferromanganese crust from the Blake Plateau at 850 m water depth, which show only small glacial-interglacial Pb isotope variations of the Florida Current (206Pb/204Pb between 19.07 and 19.16). The lack of change in the Blake Plateau record at the same time ...