The Global Ocean Biogeochemistry (GO-BGC) array of profiling floats to observe changing ocean chemistry and biology

© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Matsumoto, G., Johnson, K., Riser, S., Talley, L., Wijffels, S., & Hotinski, R. The Global Ocean Biogeochemistry (GO-BGC) array of profiling flo...

Full description

Bibliographic Details
Published in:Marine Technology Society Journal
Main Authors: Matsumoto, George I., Johnson, Kenneth S., Riser, Stephen C., Talley, Lynne D., Wijffels, Susan E., Hotinski, Roberta
Format: Article in Journal/Newspaper
Language:unknown
Published: Marine Technology Society 2022
Subjects:
Online Access:https://hdl.handle.net/1912/29418
Description
Summary:© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Matsumoto, G., Johnson, K., Riser, S., Talley, L., Wijffels, S., & Hotinski, R. The Global Ocean Biogeochemistry (GO-BGC) array of profiling floats to observe changing ocean chemistry and biology. Marine Technology Society Journal, 56(3), (2022): 122–123, https://doi.org/10.4031/mtsj.56.3.25. The Global Ocean Biogeochemistry (GO-BGC) Array is a project funded by the US National Science Foundation to build a global network of chemical and biological sensors on Argo profiling floats. The network will monitor biogeochemical cycles and ocean health. The floats will collect from a depth of 2,000 meters to the surface, augmenting the existing Argo array that monitors ocean temperature and salinity. Data will be made freely available within a day of being collected via the Argo data system. These data will allow scientists to pursue fundamental questions concerning ocean ecosystems, monitor ocean health and productivity, and observe the elemental cycles of carbon, oxygen, and nitrogen through all seasons of the year. Such essential data are needed to improve computer models of ocean fisheries and climate, to monitor and forecast the effects of ocean warming and ocean acidification on sea life, and to address key questions identified in “Sea Change: 2015–2025 Decadal Survey of Ocean Sciences” such as: What is the ocean’s role in regulating the carbon cycle? What are the natural and anthropogenic drivers of open ocean deoxygenation? What are the consequences of ocean acidification? How do physical changes in mixing and circulation affect nutrient availability and ocean productivity? Funding for the GO-BGC Array is provided through the NSF’s Mid-Scale Research Infrastructure-2 Program (MSRI-2; NSF Award 1946578).