The eastern Atlantic basin pathway for the export of the North Atlantic deep waters

Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(24), (2021): e2021GL095615, https://doi.org/10.1029/2021GL0956...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Zhai, Yujia, Yang, Jiayan, Wan, Xiuquan
Format: Article in Journal/Newspaper
Language:unknown
Published: American Geophysical Union 2021
Subjects:
Online Access:https://hdl.handle.net/1912/28102
Description
Summary:Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(24), (2021): e2021GL095615, https://doi.org/10.1029/2021GL095615. The North Atlantic deep water (NADW), according to the classic ocean circulation theory, moves southward as a deep western boundary current (DWBC) even though it may veer into interior and then rejoin DWBC when encountering regional circulation features, such as eddy-driven recirculation. In potential vorticity dynamics, the eastern side of the Mid-Atlantic Ridge (MAR) may provide a similar topographic support as the continental slope off the western boundary for a southward transport of NADW. In this article, we quantify the mean meridional NADW transports on both sides of the MAR using a data-assimilated product and find that the flow in the eastern basin contributes about 38 ± 14% of the net southward transport of NADW from 50° to 35°N. Our study points to the importance of observing NADW transport variations on the eastern side of the MAR in order to monitor the transport strength of Atlantic Meridional Overturning Circulation. iayan Yang is supported by the WHOI-OUC Collaborative Initiative, the W. V. A. Clark Chair for Excellence in Oceanography from WHOI, and National Science Foundation. Sijia Zou acknowledges the support from the Physical Oceanography Program of the United States National Science Foundation Grants OCE-1756361. Yujia Zhai is supported by China Scholarship Council as a 2-yr guest student to visit WHOI. Yujia Zhai and Xiuquan Wan are supported by major project (41776009) of National Natural Science Foundation of China. Data from the RAPID MOC monitoring project are funded by the Natural Environment Research Council and are freely available from www.rapid.ac.uk/rapidmoc. Collection of MOVE data was funded by NOAA Research, and carried out by principal investigators Uwe Send and Matthias ...