Wintertime water mass transformation in the western Iceland and Greenland Seas

Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(8), (2021): e2020JC016893, https://doi.org/10.1029...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Oceans
Main Authors: Huang, Jie, Pickart, Robert S., Bahr, Frank B., McRaven, Leah T., Xu, Fanghua
Format: Article in Journal/Newspaper
Language:unknown
Published: American Geophysical Union 2021
Subjects:
Online Access:https://hdl.handle.net/1912/27736
Description
Summary:Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(8), (2021): e2020JC016893, https://doi.org/10.1029/2020JC016893. Hydrographic and velocity data from a 2018 winter survey of the western Iceland and Greenland Seas are used to investigate the ventilation of overflow water feeding Denmark Strait. We focus on the two general classes of overflow water: warm, saline Atlantic-origin Overflow Water (AtOW) and cold, fresh Arctic-origin Overflow Water (ArOW). The former is found predominantly within the East Greenland Current (EGC), while the latter resides in the interior of the Iceland and Greenland Seas. Progressing north to south, the properties of AtOW in the EGC are modified diapycnally during the winter, in contrast to summer when along-isopycnal mixing dominates. The water column response to a 10-days cold-air outbreak was documented using repeat observations. During the event, the northerly winds pushed the freshwater cap of the EGC onshore, and convection modified the water at the seaward edge of the current. Lateral transfer of heat and salt from the core of AtOW in the EGC appears to have influenced some of this water mass transformation. The long-term evolution of the mixed layers in the interior was investigated using a 1-D mixing model. This suggests that, under strong atmospheric forcing, the densest component of ArOW can be ventilated in this region. Numerous anti-cyclonic eddies spawned from the EGC were observed during the winter survey, revealing that these features can play differing roles in modifying/prohibiting the open-ocean convection. Funding was provided by the National Science Foundation under grant OCE-1558742. 2022-01-14