Hydroclimate dipole drives multi-centennial variability in the western tropical North Atlantic Margin during the middle and late Holocene

Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 36(7), (2021): e2020PA004184, https://doi.org/10.1029/20...

Full description

Bibliographic Details
Published in:Paleoceanography and Paleoclimatology
Main Authors: Sullivan, Richard M., van Hengstum, Peter J., Coats, Sloan, Donnelly, Jeffrey P., Tamalavage, Anne E., Winkler, Tyler S., Albury, Nancy A.
Format: Article in Journal/Newspaper
Language:unknown
Published: American Geophysical Union 2021
Subjects:
Online Access:https://hdl.handle.net/1912/27671
Description
Summary:Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 36(7), (2021): e2020PA004184, https://doi.org/10.1029/2020PA004184. Meridional shifts of the North Atlantic Subtropical High (NASH) western edge create a dipole that drives hydroclimate variability in the southeastern United States and Caribbean region. Southwest displacements suppress rainfall in the southern Caribbean. Northwest displacements drive southeast United States and northern Caribbean drying. Projections for the 21st century suggest a more meridionally displaced NASH, which jeopardizes Caribbean island communities dependent on rain-fed aquifers. While recent work indicates that Atlantic and Pacific Ocean-atmosphere variability influenced the NASH during the instrumental period, little is known about NASH behavior and subsequent hydroclimate responses over longer timescales. To address this limitation, we developed a ∼6000-years long rainfall record through the analysis of calcite raft deposits archived within sediments from a coastal sinkhole in the northeast Bahamas (Abaco Island). Increased (decreased) calcite raft deposition provides evidence for increased (decreased) rainfall driven by NASH variability. We use simulations from the Community Earth System Model to support this interpretation. These simulations improve our understanding of NASH behavior on timescales congruous with the reconstruction and suggest an important role for the state of the Pacific Ocean. Furthermore, model simulations and a compilation of regional hydroclimate reconstructions reveal that the NASH-driven dipole dominates northern and southern Caribbean rainfall on centennial timescales. These results bring Holocene Caribbean hydroclimate variability into sharper focus while providing important context for present and future changes to regional climate. Additionally, this study ...