Ocean acidification disrupts the orientation of postlarval Caribbean spiny lobsters

© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gravinese, P. M., Page, H. N., Butler, C. B., Spadaro, A. J., Hewett, C., Considine, M., Lankes, D., & Fisher, S. Ocean acidification disrupts t...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Gravinese, Philip M., Page, Heather N., Butler, Casey B., Spadaro, Angelo Jason, Hewett, Clay, Considine, Megan, Lankes, David, Fisher, Samantha
Format: Article in Journal/Newspaper
Language:unknown
Published: Nature Research 2020
Subjects:
Online Access:https://hdl.handle.net/1912/26412
Description
Summary:© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gravinese, P. M., Page, H. N., Butler, C. B., Spadaro, A. J., Hewett, C., Considine, M., Lankes, D., & Fisher, S. Ocean acidification disrupts the orientation of postlarval Caribbean spiny lobsters. Scientific Reports, 10(1), (2020): 18092, doi:10.1038/s41598-020-75021-9. Anthropogenic inputs into coastal ecosystems are causing more frequent environmental fluctuations and reducing seawater pH. One such ecosystem is Florida Bay, an important nursery for the Caribbean spiny lobster, Panulirus argus. Although adult crustaceans are often resilient to reduced seawater pH, earlier ontogenetic stages can be physiologically limited in their tolerance to ocean acidification on shorter time scales. We used a Y-maze chamber to test whether reduced-pH seawater altered the orientation of spiny lobster pueruli toward chemical cues produced by Laurencia spp. macroalgae, a known settlement cue for the species. We tested the hypothesis that pueruli conditioned in reduced-pH seawater would be less responsive to Laurencia spp. chemical cues than pueruli in ambient-pH seawater by comparing the proportion of individuals that moved to the cue side of the chamber with the proportion that moved to the side with no cue. We also recorded the amount of time (sec) before a response was observed. Pueruli conditioned in reduced-pH seawater were less responsive and failed to select the Laurencia cue. Our results suggest that episodic acidification of coastal waters might limit the ability of pueruli to locate settlement habitats, increasing postsettlement mortality. We thank the Steinwachs Family Foundation, which provided funding that supported Gravinese’s postdoctoral fellowship at Mote Marine Laboratory and Aquarium. We also acknowledge the partial support provided by the St. Petersburg College Titan Achievement minigrant program. Page was supported by a Mote Marine Laboratory and ...