Late Paleogene (Eocene to Oligocene) paleoceanography of the northern North Atlantic

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution October 1982 Seismic stratigraphic evidence from the western and northern North Atlantic indicates that a major change...

Full description

Bibliographic Details
Main Author: Miller, Kenneth George
Format: Thesis
Language:English
Published: Massachusetts Institute of Technology and Woods Hole Oceanographic Institution 1982
Subjects:
Online Access:https://hdl.handle.net/1912/2604
Description
Summary:Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution October 1982 Seismic stratigraphic evidence from the western and northern North Atlantic indicates that a major change in abyssal circulation occurred in the latest Eocene to earliest Oligocene. In the northern North Atlantic, the widely-distributed reflector R4 correlates with an unconformity that can be traced to its correlative conformity near the top of the Eocene. This horizon reflects a change from weakly circulating (Eocene) to vigorously circulating bottom water (early Oligocene). Sediment distribution patterns provide evidence for strong contour-following bottom water flow beginning at reflector R4 time; this suggests a northern source for this bottom water, probably from the Arctic via the Norwegian-Greenland Sea and Faeroe-Shetland Channel. Erosion and current-controlled sedimentation continued through the Oligocene; however, above reflector R3 (middle to upper Oligocene), the intensity of abyssal currents decreased. Above reflector R2 (upper lower Miocene) current-controlled sedimentation became more coherent and a major phase of sedimentary drift development began. This resulted from further reduction in speeds and stabilization of abyssal currents. Paleontological and stable isotopic data support these interpretations. In the Bay of Biscay/Goban Spur regions, a major δ180 increase began at -38 Ma (late Eocene), culminating in a rapid (<0.5 my) increase in δ180 just above the Eocene/Oligocene boundary (-36.5 Ma). A rapid δ13C increase also occurs at -36.5 Ma in these sites. Major changes in benthic foraminiferal assemblages also occurred between the middle Eocene and the earliest Oligocene: 1) In the Labrador Sea, a predominantly agglutinated assemblage was replaced by a calcareous assemblage between the middle Eocene and early Oligocene; 2) In the abyssal (> 3km) Bay of Biscay, an indigenous Eocene calcareous ...