River Inflow Dominates Methane Emissions in an Arctic Coastal System

Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47 (2020): e2020GL087669, doi:10.1029/2020GL087669. We present a...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Manning, Cara C., Preston, Victoria Lynn, Jones, Samantha F., Michel, Anna P. M., Nicholson, David P., Duke, Patrick J., Ahmed, Mohamed M. M., Manganini, Kevin, Else, Brent G. T., Tortell, Philippe D.
Format: Article in Journal/Newspaper
Language:unknown
Published: American Geophysical Union 2020
Subjects:
Online Access:https://hdl.handle.net/1912/25825
Description
Summary:Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47 (2020): e2020GL087669, doi:10.1029/2020GL087669. We present a year‐round time series of dissolved methane (CH4), along with targeted observations during ice melt of CH4 and carbon dioxide (CO2) in a river and estuary adjacent to Cambridge Bay, Nunavut, Canada. During the freshet, CH4 concentrations in the river and ice‐covered estuary were up to 240,000% saturation and 19,000% saturation, respectively, but quickly dropped by >100‐fold following ice melt. Observations with a robotic kayak revealed that river‐derived CH4 and CO2 were transported to the estuary and rapidly ventilated to the atmosphere once ice cover retreated. We estimate that river discharge accounts for >95% of annual CH4 sea‐to‐air emissions from the estuary. These results demonstrate the importance of resolving seasonal dynamics in order to estimate greenhouse gas emissions from polar systems. All data generated by the authors that were used in this article are available on PANGAEA (https://doi.org/10.1594/PANGAEA.907159) and model code for estimating CH4 transport is available on GitHub (https://doi.org/10.5281/zenodo.3785893). We acknowledge the use of imagery from the NASA Worldview application (https://worldview.earthdata.nasa.gov), part of the NASA Earth Observing System Data and Information System (EOSDIS), and data from Ocean Networks Canada, and Environment Canada. We thank everyone involved in the fieldwork including C. Amegainik, Y. Bernard, A. Cranch, F. Emingak, S. Marriott, and A. Pedersen. Laboratory analysis and experiments were performed by A. Cranch, R. McCulloch, A. Morrison, and Z. Zheng. We thank J. Brinckerhoff, the Arctic Research Foundation, and the staff of the Canadian High Arctic Research Station for support with field logistics. Funding for the work was provided by MEOPAR ...