Mid-ocean ridge jumps associated with hotspot magmatism

Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 266 (2008): 256-270, doi:10.1016/j.epsl.2007.10...

Full description

Bibliographic Details
Published in:Earth and Planetary Science Letters
Main Authors: Mittelstaedt, Eric, Ito, Garrett T., Behn, Mark D.
Format: Report
Language:English
Published: 2007
Subjects:
Online Access:https://hdl.handle.net/1912/2131
Description
Summary:Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 266 (2008): 256-270, doi:10.1016/j.epsl.2007.10.055. Hotspot-ridge interaction produces a wide range of phenomena including excess crustal thickness, geochemical anomalies, off-axis volcanic ridges and ridge relocations or jumps. Ridges are recorded to have jumped toward many hotspots including, Iceland, Discovery, Galapagos, Kerguelen and Tristan de Cuhna. The causes of ridge jumps likely involve a number of interacting processes related to hotspots. One such process is reheating of the lithosphere as magma penetrates it to feed near-axis volcanism. We study this effect by using the hybrid, finite-element code, FLAC, to simulate two-dimensional (2-D, cross-section) viscous mantle flow, elasto-plastic deformation of the lithosphere and heat transport in a ridge setting near an off-axis hotspot. Heating due to magma transport through the lithosphere is implemented within a hotspot region of fixed width. To determine the conditions necessary to initiate a ridge jump, we vary four parameters: hotspot magmatic heating rate, spreading rate, seafloor age at the location of the hotspot and ridge migration rate. Our results indicate that the hotspot magmatic heating rate required to initiate a ridge jump increases non-linearly with increasing spreading rate and seafloor age. Models predict that magmatic heating, itself, is most likely to cause jumps at slow spreading rates such as at the Mid-Atlantic Ridge on Iceland. In contrast, despite the higher magma flux at the Galapagos hotspot, magmatic heating alone is probably insufficient to induce a ridge jump at the present-day due to the intermediate ridge spreading rate of the Galapagos Spreading Center. The time required to achieve a ridge jump, for fixed or migrating ridges, is found to be on the order of 105-106 years. ...