Isotopic constraints on nitrogen transformation rates in the deep sedimentary marine biosphere

Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Isotopic constraints on nitrogen transformation rates in the deep sedimentary marine biosphere...

Full description

Bibliographic Details
Published in:Global Biogeochemical Cycles
Main Authors: Buchwald, Carolyn, Homola, Kira, Spivack, Arthur J., Estes, Emily R., Wankel, Scott D.
Format: Article in Journal/Newspaper
Language:unknown
Published: American Geophysical Union 2018
Subjects:
Online Access:https://hdl.handle.net/1912/10812
Description
Summary:Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Isotopic constraints on nitrogen transformation rates in the deep sedimentary marine biosphere. Global Biogeochemical Cycles, 32, (2018):1688–1702., doi:10.1029/2018GB005948. Little is known about the nature of microbial community activity contributing to the cycling of nitrogen in organic-poor sediments underlying the expansive oligotrophic ocean gyres. Here we use pore water concentrations and stable N and O isotope measurements of nitrate and nitrite to constrain rates of nitrogen cycling processes over a 34-m profile from the deep North Atlantic spanning fully oxic to anoxic conditions. Using a 1-D reaction-diffusion model to predict the distribution of nitrogen cycling rates, results converge on two distinct scenarios: (1) an exceptionally high degree of coupling between nitrite oxidation and nitrate reduction near the top of the anoxic zone or (2) an unusually large N isotope effect (~60‰) for nitrate reduction that is decoupled from the corresponding O isotope effect, which is possibly explained by enzyme-level interconversion between nitrite and nitrate. Samples analyzed for this study were collected during the final expedition of the RV Knorr, KN223. The expedition would not have been possible without the captain and crew of the RV Knorr and the efforts of the shipboard science party. We would like to acknowledge Robert Pockalny for planning and facilitating the expedition. Inorganic geochemistry sample collection, processing, and analysis were performed shipboard by Arthur Spivack,Dennis Graham, Chloe Anderson, Emily Estes, Kira Homola, Claire McKinley, Theodore Present, and Justine Sauvage. Coring capabilities were provided by the Oregon State University and Woods Hole Oceanographic Institute Coring Facilities, directed and funded by the U. S. National Science Foundation (NSF) Ship Facilities ...