Colony formation in Phaeocystis antarctica : connecting molecular mechanisms with iron biogeochemistry

© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 15 (2018): 4923-4942, doi:10.5194/bg-15-4923-2018. Phaeocystis antarctica is an important phytoplankter of the Ross Sea where it domi...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Bender, Sara J., Moran, Dawn M., McIlvin, Matthew R., Zheng, Hong, McCrow, John P., Badger, Jonathan, DiTullio, Giacomo R., Allen, Andrew E., Saito, Mak A.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications on behalf of the European Geosciences Union 2018
Subjects:
Online Access:https://hdl.handle.net/1912/10564
Description
Summary:© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 15 (2018): 4923-4942, doi:10.5194/bg-15-4923-2018. Phaeocystis antarctica is an important phytoplankter of the Ross Sea where it dominates the early season bloom after sea ice retreat and is a major contributor to carbon export. The factors that influence Phaeocystis colony formation and the resultant Ross Sea bloom initiation have been of great scientific interest, yet there is little known about the underlying mechanisms responsible for these phenomena. Here, we present laboratory and field studies on Phaeocystis antarctica grown under multiple iron conditions using a coupled proteomic and transcriptomic approach. P. antarctica had a lower iron limitation threshold than a Ross Sea diatom Chaetoceros sp., and at increased iron nutrition (>120pM Fe') a shift from flagellate cells to a majority of colonial cells in P. antarctica was observed, implying a role for iron as a trigger for colony formation. Proteome analysis revealed an extensive and coordinated shift in proteome structure linked to iron availability and life cycle transitions with 327 and 436 proteins measured as significantly different between low and high iron in strains 1871 and 1374, respectively. The enzymes flavodoxin and plastocyanin that can functionally replace iron metalloenzymes were observed at low iron treatments consistent with cellular iron-sparing strategies, with plastocyanin having a larger dynamic range. The numerous isoforms of the putative iron-starvation-induced protein (ISIP) group (ISIP2A and ISIP3) had abundance patterns coinciding with that of either low or high iron (and coincident flagellate or the colonial cell types in strain 1871), implying that there may be specific iron acquisition systems for each life cycle type. The proteome analysis also revealed numerous structural proteins associated with each cell type: within flagellate cells actin and ...