Carbon turnover in Alaskan tundra soils : effects of organic matter quality, temperature, moisture and fertilizer

Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Journal of Ecology 94 (2006): 740-753, doi:10.1111/j.1365-2745.2006.01139.x. Soils of t...

Full description

Bibliographic Details
Published in:Journal of Ecology
Main Authors: Shaver, Gaius R., Giblin, Anne E., Nadelhoffer, Knute J., Thieler, K. K., Downs, M. R., Laundre, James A., Rastetter, Edward B.
Format: Report
Language:English
Published: 2006
Subjects:
Online Access:https://hdl.handle.net/1912/1038
Description
Summary:Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Journal of Ecology 94 (2006): 740-753, doi:10.1111/j.1365-2745.2006.01139.x. Soils of tundra and boreal ecosystems contain large organic matter stocks, typically as a layer of peat that blankets the underlying mineral soil. Despite the low productivity of northern vegetation, organic matter accumulates as peat because decomposition of plant litter is limited by low soil temperatures and often wet, anaerobic conditions (Heal et al. 1981, Jonasson et al. 2001). The total C storage in this northern peat is globally significant, accounting for about one third of the global soil C stock if one includes both tundras and boreal forests (Oechel and Billings 1992, Callaghan et al. 2004a). Soils of northern ecosystems also contain large amounts of organic N that is currently unavailable to plants, but is potentially available and could support higher productivity if mineralized (Shaver et al. 1991, Nadelhoffer et al. 1992, Weintraub and Schimel 2005 a). Controls on soil C stocks and turnover, therefore, are key issues for understanding C exchanges between northern ecosystems and the atmosphere. In this paper, we determine how C losses from peaty soil organic matter are related to its chemical composition, and how that composition changes as the organic matter decomposes. To address these issues we compared four soil organic matter types from three tundra ecosystems near Toolik Lake, Alaska. The comparison included both unfertilized soils and soils that were fertilized annually for eight years before sampling. Under laboratory conditions, we determined how temperature and moisture conditions affect C losses from these organic matter types. The experiment also allowed us to determine how the chemical composition of different types of organic matter changed over four simulated “seasons” of decomposition. The chemical ...