Investigation and Development of Post-Season Modelling of Arrow Squid in the Snares and Auckland Islands

Squid fisheries require a different management approach to most fish species which are much longer living. Most squid live for around one year, spawn and then die. The result of this is an entirely new stock each year with little or no relationship of stock sizes between the years. Hence, it is diff...

Full description

Bibliographic Details
Main Author: McGregor, Vidette Louise
Other Authors: Pledger, Shirley, Francis, Chris
Format: Master Thesis
Language:English
Published: Victoria University of Wellington 2013
Subjects:
Online Access:http://researcharchive.vuw.ac.nz/handle/10063/2672
Description
Summary:Squid fisheries require a different management approach to most fish species which are much longer living. Most squid live for around one year, spawn and then die. The result of this is an entirely new stock each year with little or no relationship of stock sizes between the years. Hence, it is difficult to set appropriate catch limits prior to the season. Currently, there is nothing set up for modelling the New Zealand squid fishery in-season or post-season. In-season management would allow for adjustments of catch limits during a season. Post-season management would provide information on how much the stock was exploited during a season (described as the escapement). I have produced an integrated model using ADMB (Automatic Differentiation Model Builder) (Fournier et al., 2011) which models length frequency data, CPUE (Catch Per Unit Effort) indices and catch weights from a season. It calculates escapement which indicates how much the fishery is currently being exploited. In running the model against data from four area and year combinations, I found the escapement calculation to be stable. The results suggest this modelling approach could be used with the current data collected for post-season modelling of the fishery. I am less confident about in-season modelling with the current data collected. The integrated model fits quite poorly to the CPUE data, suggesting some discrepancy either between the data or the assumptions made of them. Sampling from a greater number of tows is recommended to improve the length frequency data and this may also improve the ability of the model to fit both to these and the CPUE.