Aeolian Iron and Its Contribution to Phytoplankton Production in McMurdo Sound, Southwest Ross Sea, Antarctica

Each summer the waters in McMurdo Sound (Lat. 77.5ºS; Long. 165ºE), south-western (SW) Ross Sea encounter vast phytoplankton blooms. This phenomenon is stimulated by the addition of bio-available iron (Fe) to an environment where phytoplankton growth is otherwise Fe-limited. One possible source of s...

Full description

Bibliographic Details
Main Author: Winton, Victoria Holly Liberty
Other Authors: Bertler, Nancy, Dunbar, Gavin
Format: Master Thesis
Language:English
Published: Victoria University of Wellington 2012
Subjects:
Online Access:http://researcharchive.vuw.ac.nz/handle/10063/2137
Description
Summary:Each summer the waters in McMurdo Sound (Lat. 77.5ºS; Long. 165ºE), south-western (SW) Ross Sea encounter vast phytoplankton blooms. This phenomenon is stimulated by the addition of bio-available iron (Fe) to an environment where phytoplankton growth is otherwise Fe-limited. One possible source of such Fe is aeolian sand and dust (ASD) which accumulates on sea ice and is released into the ocean during the summer melt season. The amount of bio-available Fe (i.e. the amount of Fe immedately accessible to phytoplankton) potentially supplied to the ocean by ASD depends on a number of factors including; the ASD flux into the ocean, its particle size distribution and Fe content. However, none of these parameters are well constrained in the SW Ross Sea region and, as a result, the significance of this Fe source in the biogeochemical cycle of phytoplankton growth remains to be quantified. This study focuses on an area (7400 km²) of Southern McMurdo Sound, one of the few areas where direct sampling of ASD that has accumulated on sea ice is possible. To evaluate the flux and solubility of Fe contained in ASD into McMurdo Sound, the mass accumulation rate and particle size of 70 surface snow samples and 3 shallow (3 m) firn cores from the nearby McMurdo Ice Shelf covering the period 2000 - 2008 have been analysed. Selected samples were also measured for total and soluble Fe, Sr and Nd isotopic ratios and mineralogy as a guide to Fe-fertilisation potential and provenance, respectively. Mass and particle size data show an exponential decrease in mass accumulation rate (from 26.00 g m⁻² yr⁻¹ to 0.70 g m⁻² yr⁻¹) and a decrease in modal particle size (from 130 to 69 μm) over a distance of 120 km from Southern McMurdo Sound northwards to Granite Harbour. Both these trends are consistent with ASD being dispersed northwards across the sea ice by southerly storms from an area of the McMurdo Ice Shelf, where submarine freezing and surface ablation have resulted in a surface covered with debris from the sea floor, known as the 'dirty ...