Long-term effects of plant diversity and composition on soil nematode communities in grassland.

An important component of plant-soil feedbacks is how plant species identity and diversity influence soil organism communities. We examine the effects of grassland plant species growing alone and together up to a richness of 12 species on nematode diversity and feeding group composition, eight years...

Full description

Bibliographic Details
Published in:Ecology
Main Authors: Viketoft, M., Bengtsson, J., Sohlenius, B., Berg, M.P., Petchey, O., Palmborg, C., Huss-Daniel, K.
Format: Article in Journal/Newspaper
Language:English
Published: 2009
Subjects:
Online Access:https://research.vu.nl/en/publications/0147f9a2-efc9-4061-9c87-7aac06cc21f8
https://doi.org/10.1890/08-0382.1
https://hdl.handle.net/1871.1/0147f9a2-efc9-4061-9c87-7aac06cc21f8
Description
Summary:An important component of plant-soil feedbacks is how plant species identity and diversity influence soil organism communities. We examine the effects of grassland plant species growing alone and together up to a richness of 12 species on nematode diversity and feeding group composition, eight years after the establishment of experimental grassland plots at the BIODEPTH site in northern Sweden. This is a substantially longer time than most other experimental studies of plant effects on soil fauna. We address the hypotheses that (1a) higher species or functional diversity of plants increases nematode diversity, as well as influences nematode community composition. Alternatively, (1b) individual plant species traits are most important for nematode diversity and community composition. (2) Plant effects on soil organisms will decrease with increasing number of trophic links between plants and soil fauna. Plant species identity was often more important than plant diversity for nematode community composition, supporting hypothesis lb. There was a weak positive relation between plant and nematode richness, which could be attributed to the presence of the legume Trifolium pratense, but also to some other plant species, suggesting a selection or sampling effect. Several plant species in different functional groups affected nematode community composition. For example, we found that legumes increased bacterial-feeding nematodes, most notably r-selected Rhabditida, while fungal-feeding nematodes were enhanced by forbs. Other bacterial feeders and obligate root feeders were positively related to grasses. Plant effects were usually stronger on plant-, bacterial-and fungal-feeding nematodes than on omnivores/predators, which supports hypothesis 2. Our study suggests that plant identity has stronger effects than plant diversity on nematode community composition, but when comparing our results with similar previous studies the effects of particular plant species appear to vary. We also found that more productive plant species ...