Description
Summary:The Campbell Plateau represents ~30% of the submerged continent of Zealandia and represents part of the Gondwana super-continent that began to break-up ~98Ma. The focus of this MSc thesis is to use sub-bottom, profile data collected in 2017 and 2018 from Campbell Plateau to improve our understanding of the Cenozoic evolution of the region. The sub-bottom profiles show a rugged basement overlain by a variety of sedimentary sequences and subsurface features such as volcanoes, onlap, and downlap surfaces as well as multiple unconformities that can be traced throughout the Cenozoic (65Ma). The sub-bottom profiles are compared to 2 drill cores; Ocean Drilling Program (ODP) site 1120 on the eastern side of the plateau and Deep Sea Drilling Program (DSDP) site 277 in the south. These drill cores indicate that the lithology from the Cretaceous onwards is predominantly biogenic calcareous sandstone and mudstone, which changes to nannofossil-rich oozes in the Miocene and foraminiferal oozes and nannofossil oozes dated early to late Pleistocene. The northern plateau appears to be relatively quiescent with thin, relatively uniform strata, only influenced by small reverse faults. Sedimentary deposits such as wedges and contourites are also evident in the central and north-western part of the study area. The southern plateau appears to be have been highly dynamic with onlap/downlap surfaces, interpreted as current scours, and erosional surfaces. There is a plateau-wide unconformity during the Pliocene, as derived from the nannofossils of the ODP1120 drill core, which appears to have been a large-scale erosional event. The Southern Ocean circulation, dominated by Antarctic Circumpolar Current, the Subtropical Front, and local wind-driven currents, are the main drivers of these lithological changes and plateau-wide sedimentological structures. Previous interpretations of the sub-surface structure of the plateau are seen to be invalid in relation to this study, with the sub-surface seen to be relatively undeformed with only ...