The Response of Brewster Glacier to Five Decades of Climate

Small perturbations in climate can produce measurable changes to the size of a glacier. Documenting such changes is important for quantifying water storage changes, and understanding glacier-climate interactions. By using all available geodetic data, such as Landsat imagery, Shuttle Radar Topography...

Full description

Bibliographic Details
Main Author: Thornton, Merijn
Format: Thesis
Language:unknown
Published: 2017
Subjects:
Online Access:https://doi.org/10.26686/wgtn.17072714
https://figshare.com/articles/thesis/The_Response_of_Brewster_Glacier_to_Five_Decades_of_Climate/17072714
Description
Summary:Small perturbations in climate can produce measurable changes to the size of a glacier. Documenting such changes is important for quantifying water storage changes, and understanding glacier-climate interactions. By using all available geodetic data, such as Landsat imagery, Shuttle Radar Topography Mission, GNSS and photogrammetric techniques, as well as ground penetrating radar for the construction of a bed DEM, it is found that Brewster Glacier decreased in volume from 1967 to 2017, losing ∼56% of its volume, with a period of volume increase of ∼10% from 1986 to 1997. The overall pattern of geodetic mass balance is similar to the glaciological mass balance record, however, the geodetic method tends to show more negative values by an average of ∼0.6 m w.e. Contrary to many other New Zealand glaciers, which experienced an advance from 1983 to 2008, Brewster Glacier continued to retreat by 390 m during the study period, at an average rate of 7.8 m a⁻¹, but at a significantly reduced rate of ∼2 m a⁻¹ from 1997 until 2005. By comparing the records of Brewster Glacier and Fox and Franz Josef glaciers, we explore the differences in response and reaction times resulting from glacier area-altitude distribution, and climatic setting. Furthermore, DEMs produced by this study are now available for use by a New Zealand wide glacier monitoring programme.