Reconstructing Neogene Climate and Glacial History of Southern McMurdo Sound, Antarctica

Understanding the glacial changes that have occurred in southern McMurdo Sound throughout the Neogene makes an important contribution to reconstructing Antarctic ice volume changes during past periods of climatic warmth, and provides insight into future possible response of the ice sheet. Fossilifer...

Full description

Bibliographic Details
Main Author: Galbraith, Elizabeth
Format: Thesis
Language:unknown
Published: 2017
Subjects:
Online Access:https://doi.org/10.26686/wgtn.17065067.v1
https://figshare.com/articles/thesis/Reconstructing_Neogene_Climate_and_Glacial_History_of_Southern_McMurdo_Sound_Antarctica/17065067
Description
Summary:Understanding the glacial changes that have occurred in southern McMurdo Sound throughout the Neogene makes an important contribution to reconstructing Antarctic ice volume changes during past periods of climatic warmth, and provides insight into future possible response of the ice sheet. Fossiliferous glacimarine deposits previously identified throughout McMurdo Sound have provided inferences on past changes in ice volume and the implications for global sea level. This study investigates new stratigraphic sections comprising fossiliferous glacimarine sediments from two locations on the flanks of Mount Discovery and one on Brown Peninsula at ~150m above present day sea-level. The aim of this thesis is to undertake a sedimentological, facies and glacimarine sequence stratigraphic analysis together with a quantitative assessment of the constituent micro and macrofossils in order to determine depositional processes, changes in environment and implications for glacial variability in the southern McMurdo Sound. Up to four distinct sedimentary cycles are evident in the Mt Discovery sections with each cycle consisting of: 1. A basal glacial surface of erosion (GSE) or its correlative conformity (CC) seaward of the grounding line, displaying an abrupt transition from a more distal facies to a more proximal facies. 2. A sharp-based massive diamictite displaying physical intermixing of subjacent lithologies, intra formational clasts, soft sediment deformation features, clast rotation features, and a lack of bioturbation, interpreted as subglacial, or in very close proximity to a marine grounding line. In some cases stratified diamictites overly correlative conformities displaying clast alignment, graded beds, and weak decimeter scale parallel bedding in the matrix, interpreted as grounding-line proximal sediment gravity flows or rain-out from ice melt. 3. In some cases, the diamictite passes gradationally-upwards or is sharply overlain by a conglomerate representing appearance of glacimarine fluvio-deltaic deposition or ...