Thermal Conductivity of Sea Ice and Antarctic Permafrost

We present results from measurements of the thermal conductivity of sea ice, ksi, using two different techniques. In the first, ice temperatures were measured at 10 cm and 30 minute intervals by automated thermistor arrays deployed in land-fast first-year (FY) and multi-year (MY) ice in McMurdo Soun...

Full description

Bibliographic Details
Main Author: Pringle, Daniel James
Format: Thesis
Language:unknown
Published: 2004
Subjects:
Ice
Online Access:https://doi.org/10.26686/wgtn.16926649.v1
https://figshare.com/articles/thesis/Thermal_Conductivity_of_Sea_Ice_and_Antarctic_Permafrost/16926649
Description
Summary:We present results from measurements of the thermal conductivity of sea ice, ksi, using two different techniques. In the first, ice temperatures were measured at 10 cm and 30 minute intervals by automated thermistor arrays deployed in land-fast first-year (FY) and multi-year (MY) ice in McMurdo Sound, Antarctica, and in FY ice in the Chukchi Sea and shallow Elson Lagoon, near Point Barrow, Alaska. Conductivity profiles through the ice were calculated from the coupled time- and depth- dependence of the temperature variations using a conservation of energy analysis, and a graphical finite difference method. These profiles show a reduction in the conductivity of up to 25% over the top ~ 50 cm, consistent with similar previous measurements. From simulations and a detailed analysis of this method, we have clearly identified this reduction (for which physical explanations had previously been invoked) as an analytical artifact, due to the presence of temperature variations with time scales much less than the 30 min sampling interval. These variations have a penetration depth that is small compared with the thermistor spacing, so the effect is shallow. Between 50 cm and the depth at which the method becomes noise-limited, we calculate average conductivities of 2.29 +/- 0.07 W/m degrees C and 2.26 +/- 0.11 W/m degrees C at the FY McMurdo Sound and Chukchi Sea sites, and 2.03 +/- 0.04 W/m degrees C at the MY site in McMurdo Sound. Using a parallel conductance method, we measured the conductivity of small (11 x 2.4 cm diameter) ice cores by heating one end of a sample holder, and with the other end held at a fixed temperature, measuring the temperature gradient with and without a sample loaded. From several different cores in each class, we resolved no significant difference, and certainly no large reduction, in the conductivity of FY surface (0-10 cm) and sub-surface (45-55 cm) ice, being 2.14 +/- 0.11 W/m degrees C and 2.09 +/- 0.12 W/m degrees C respectively. The conductivity of less dense, bubbly MY ice was measured to ...