Tidally-forced lee waves drive turbulent mixing along the Arctic Ocean margins

In the Arctic Ocean, limited measurements indicate that the strongest mixing below the atmospherically forced surface mixed layer occurs where tidal currents are strong. However, mechanisms of energy conversion from tides to turbulence, and the overall contribution of tide-driven mixing to Arctic Oc...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Fer, Ilker, Koenig, Zoe, Koslov, Igor, Ostrowski, Marek, Rippeth, Tom, Padman, Laurie, Bosse, Anthony, Kolas, Eivind
Format: Article in Journal/Newspaper
Language:English
Published: 2020
Subjects:
Online Access:https://research.bangor.ac.uk/portal/en/researchoutputs/tidallyforced-lee-waves-drive-turbulent-mixing-along-the-arctic-ocean-margins(267cb9e2-a3cd-4763-b36a-e43923f526a2).html
https://doi.org/10.1029/2020GL088083
https://research.bangor.ac.uk/ws/files/35185516/2020_Tidally_foreced_lee_waves.pdf
Description
Summary:In the Arctic Ocean, limited measurements indicate that the strongest mixing below the atmospherically forced surface mixed layer occurs where tidal currents are strong. However, mechanisms of energy conversion from tides to turbulence, and the overall contribution of tide-driven mixing to Arctic Ocean state, are poorly understood. We present measurements from the shelf north of Svalbard that show abrupt isopycnal vertical displacements of 10{50} m and intense dissipation associated with cross-isobath diurnal tidal currents of ~ 0:15 m/s. Energy from the barotropic tide accumulated in a trapped baroclinic lee wave during maximum downslope flow , which and was released around slack water. During a 6-h turbulent event, high frequency internal waves were present, the full 300 m depth water column became turbulent, dissipation rates increased by a factor of 100 and turbulent heat flux averaged 15 W/m2 compared with the background rate of 1 W/m2.